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SURGE-INCEPTION STUDY IN A TWO-SPOOL TURBOJET ENGINE

By Lewis E. Wallner, Robert J. Lubick, and Martin J. Saari

ABSTRACT

Extensive steady-state and transient instrumentation was employed
to study compressor behavior leading to surge. Compressor surge in the
midspeed region and rotating stall in the low-speed region for the outer
spool were avoided by the use of compressor air bleed. For acceleration
to the compressor stall limit, it was found that rotating stall was not
& necessary condition for compressor surge. For these accelerations,
the exit-stage group was first to stall, followed by the stalling of the
upstream stages in succession. Individual stage-group stall lines were
constructed, and a comparison made with a stall line computed from a
steady-state loading curve for one stage group.

INDEX HEADINGS
Engines, Turbojet 3.1.3

Engines, Control - Turbojet 3.2.2

Compressors - Axial Flow 3.6.1.1
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RESEARCH MEMORANDUM

SURGE-INCEPTION STUDY IN A TWO-SPOOL TURBOJET ENGINE

By Lewis E. Wallner, Robert J. Lubick, and Martin J. Saari

SUMMARY

A two-spool turbojet engine was operated in the Lewis altitude

wind tunnel to study the inception of compressor surge. In addition

to the usual steady-state pressure and temperature measurements, the
compressors were extensively instrumented with fast-response interstage
pressure transducers. Thus it was possible to obtain maps for both com-
pressors, pressure oscillations during rotating stall, effects of stall
on efficiency, and stage-loading curves. In addition, with the tran-
sient measurements, it was possible to record interstage pressures and
then compute stage performance during accelerations to the stall limit.

Rotating stall was found to exist at low speeds in the outer spool.
Although the stall arose from poor flow conditions at the inlet-stage
blade tips, the low-energy air moved through the machine from the tip-
at the inlet to the outer spool to the hub at the inlet to the inner
spool. This tip stall ultimately resulted in compressor surge in the
midspeed region, and necessitated intercompressor air bleed.

Interstage pressure measurements during acceleration to the com-
pressor stall limit indicated that rotating stall was not a necessary
condition for compressor surge and that, at the critical stall point,
the circumferential interstage pressure distribution was uniform. The
exit-stage group of the inner spool was first to stall; then, the
stages upstream stalled in succession until the inlet stage of the outer
spool was stalled. With a sufficiently high fuel rate, the process re-
Peated with a cycle time of about 0.1 second. It was possible to con-
struct reproducible stage stall lines as a function of compressor speed
from the stage stall points of several such cowmpressor surges. This
transient stall line was checked by computing the stall line from a
steady-state stage-loading curve. Good agreement between the stage
stall lines was obtained by these two methods.

INTRODUCTION

As the loading of a compressor is increased at a given speed, a
point is reached where the flow through the machine is no longer stable.
This flow instability, which is generally referred to as surge, is
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defined by Stodola (ref. 1), as "a periodic sudden sending back of the
compressed fluid through the compressor and into the atmosphere.” This
loading limit has perplexed designers of both axial- and centrifugal-
flow machinery for some time. Throughout the entire period of compres-
sor development, ingenious devices have been suggested to alleviate or
cilrcumvent compressor surge. German patents were issued as early as

1915 on methods of reducing the violence of surge by adjusting the dis-
charge volume of a compressor. Other schemes include blade design
changes, variable-position stators, air bleed, recirculation, and air-
passage modifications (refs. 2 to 7). An efficient compressor can be
designed to operate without encountering surge if weight and loading
change are unimportant. However, for aircraft applications where effi-
ciency, weight, and acceleration margin are prime considerations, a
satisfactory solution to the problem has not been found. The reasons

for this are at least twofold: Regardless of the weight or efficiency
of an engine, attempts are always being made to improve engine perform-
ance in order to improve airplane performance, which generally results in
forcing the operating pressures as close to the surge limit as possible.
For lack of an adequate signal to warn of the approach of surge, a control
that can avoid the dangerous flow instability has not been designed. The
problem is complicated by many additional factors such as nonreproducibil-
ity of surge data (ref. 8), Reynolds number effects (ref. 9), and inlet
distortion effects (ref. 10).

In addition to the classical type of surge defined by Stodolsa,
other flow instabilities can be encountered in compressors (ref. 11).
The most widely known of these is the rotating-stall phenomenon, which
has been defined as blade flow instability characterized by propagating
cells of stalled flow. References 12 to 14 describe these rotating
stalls and the conditions at which they are likely to be encountered,
how to recognize them, and particularly how to count them. The frequen-
cy can be important because of the possibility of excitation of serious
blade-vibration stresses (ref. 15).

The advent of high-response instrumentation and high-speed record-
ing techniques provided the means for a closer examination of the surge
problem. In an effort to understand the nature of this flow instability,
the following are some factors that should be explored: flow conditions
existing during surge of the compressor as a unit; the relation between
surge and rotating stall; whether surge is simply a magnification of ro-
tating stall; the possibility of the most heavily loaded stage in a com-

pressor causing surge; and prediction of the loading limit of a compressor.

In the investigation reported herein these factors are examined by a de-

tailed study of flow conditions within a compressor as surge is approached.

The experimental data presented herein were obtained with a two-spool
turbojet engine that had been installed in the Lewis altitude wind tunnel
for other research purposes. These data were taken at engine-inlet total
pressures corresponding to a flight Mach number of 0.80 at altitudes of
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35,000 and 50,000 feet. The compressor units were operated over a range
of steady-state pressure ratios well beyond those encountered in normal
engine operation by use of air bleed and air injection combined with
exhaust-nozzle-area regulation. Interstage measurements were taken to
define the steady-state stage performance curves. Fast-response pressure
measuring and recording instrumentation provided a method for realizing
the following objectives: evaluating stage and over-all compressor per-
formance during transient operation to the stall limit; determining the
origin of incipient pressure oscillations within the compressor; tracing
the propagation of disturbances through the compressor; constructing
stall-limit lines for individual stage groups; and comparing stage stall
characteristics determined from transient measurements with a stall line
constructed from the steady-state stage-locading curve.

APPARATUS
Engine and Installation

The turbojet engine was mounted on a wing section that spanned the
test section of the altitude wind tunnel, as shown in figure 1. Atmos-
pheric air was dried, refrigerated, and throttled to the desired ram
pressure ratio before being introduced into the engine through the direct-
connected ducting. Automatic, fast-response bleed valves installed in
the inlet duct walls were used to keep the ram pressure constant during
transient engine operation. (An evaluation of this technique is pre-
sented in ref. 16.)

The two-spool engine is in the 10,000-pound-thrust class. The inner-
spool unit consists of a seven-stage axial-flow compressor connected to
a single-stage turbine. The outer-spool unit consists of a nine-stage
axial -flow compressor connected through a concentric shaft to a two-stage
turbine. The two units are not coupled mechanically. Two air-bleed
ports permit air to be bled from the discharge of the outer spool in or-
der to avoid stall at low engine speeds. In normal engine operation, the
bleed valve position is scheduled against corrected outer-spool speed so
that the bleed ports are closed at engine speeds above about 90 percent
of rated speed. During this investigation, however, the bleed valves
were operated manually to facilitate obtaining data over as wide a range
of compressor operation as possible.

The normal engine fuel system was replaced by an external system
that incorporated a fast-acting fuel throttling valve for making the rapid
increases in fuel flow required in the establishment of compressor-surge
limits. The valve also provided fuel control during steady-state engine
operation.
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A clam-shell-type variable-area exhaust nozzle was installed on the
engine to provide a method for changing the steady-state operating point
of the compressor units and thereby allowed a quasi-steady-state approach
to compressor surge.

Instrumentation

Instrumentation used to measure the steady-state compressor perform-
ance is indicated in table I. The following parameters were measured on
a multiple-channel, direct-inking oscillograph during both steady-state
and transient operation: outer- and inner-spool speed, engine fuel flow,
inner-spool inlet temperature, and inlet and exit pressures for each com-
pressor. The probes used for these pressures were the visual design used
for obtaining steady-state data. As a result, the frequency response of
the probe and the complete recording system was flat to only about 10
cycles per second. In order to obtain high-speed records with better
frequency-response characteristics, specially designed pressure probes
and a different recording method were used. These pressure probes were
directly connected to balanced strain-gage transducers, the signal from
which was amplified by carrier-type amplifiers. The amplifiers drove
galvanometers in a 16-channel photographically recording oscillograph.
The frequency response of this measuring system was flat to about 50
cycles per second. Photographic records of the pressure changes could
be produced as fast as 48 inches per second. These pressure probes were
placed at the exit of compressor stator stages 1, 3, 6, 9, 10, 13, and 16.
Although for most of the tests the probes were placed two-thirds the dis-
tance from the hub to the tip, the effects of immersion on stall intensity
and the effect of circumferential position were investigated.

RESULTS AND DISCUSSION

The purpose of this investigation was to study compressor aerodynamic
phenomena over as wide a range of compressor operation as possible. These
operating conditions were, in most cases, considerably beyond the con-
straining limits of normal engine operation with regard to interspool air
bleed and exhaust-nozzle variation. Consequently, some of the data bear
no relation to the compressor characteristics encountered during normal
scheduled engine operation. In order to provide the proper continuity,
the steady-state compressor operation, including both over-all and inter-
stage performance, is presented first and is followed by the discussion
of compressor operation during fuel flow transients that induce stall or
surging conditions.

Steady-State Compressor Performance

Outer spool. - The over-all performance of the outer spool relating
pressure ratio, speed, and airflow is shown in figure 2. The effects of

O
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engine exhaust-nozzle-area changes and intercompressor air bleed are il-
lustrated with the stall-limit line (compressor surge). A discussion of
the interrelation of these variables in a two-spool turbojet engine is
beyond the scope of this paper, but may be found in reference 17. It
should be noted that the outer-spool pressure ratio increased with in-
creasing exhaust-nozzle area at a given corrected speed. With the com-
Pressor bleeds closed, the steady-state operating line for large nozzle
areas can intersect the stall-limit line in the midspeed range. Normally
stall-free operation is accomplished by use of interspool air bleed, which
lowers the operating pressure ratio below the stall limit. Rotating stall
was detected at about 53 percent of outboard-spool rated speed (with
bleeds closed), and the rotating stall became progressively more intense
as engine speed was increased until, at 67 percent speed, complete stall
and surge occurred. It is emphasized that this rotating-stall phenomenon
is avoided during scheduled engine operation by using compressor air
bleed. The rotating stalls discussed in the following section were pur-
posely induced to study the persistence, propagation, and general behavior
characteristics of the rotating-stall phenomena in a full-scale engine.

Interstage pressure oscillations. - Data that indicate the character
of the rotating-stall condition (with compressor bleeds closed) in the
outer spool are illustrated in figures 2 and 3. Pressure pickups were
placed in compressor stages 1, 3, 6, 9, 10, and 13 (at 30-percent immer-
sion) as outlined in the instrumentation discussion. The oscillations
in pressure that were obtained through the rotating-stall region are
shown in figure 3. Figures 3(a) to (f) correspond to points a to f in
figure 2. The pressure traces in figure 3(a) indicate no periodic dis-
turbance and a relatively small amplitude of pressure fluctuation. The
amplitude of the pressure oscillations are shown above each pressure
trace. As speed is increased to about 57.0 percent (point b, fig. 2) a
single rotating stall appears with a pressure amplitude of 5.5 percent in
the first compressor stage. This single-zone stall is rotating at about
one-half of outer-spool speed (typical for axial-flow compressors) and
is rather weak, as evidenced by the short time in stall compared with the
unstalled period. Traces from the first stator stage in figure 3(b) indi-
cate a sharp well-defined rotating-stall pattern; however, in the third
and sixth stages, the fluctuations have almost disappeared. Farther rear-
ward in the compressor the periodic fluctuations reappear, at the same
frequency, although the pattern is less clearly defined. As speed is
further increased, a two-zone rotating-stall pattern is formed and the
stalled portion of the cycle grows, indicating increased area of the
rotating-stall cell. Raising the speed above that for figure 3(e) re-
sults in compressor surge; the surge condition persists until the engine
is accelerated to about 79.0 percent (point f on fig. 2). Pressure traces
at this operating condition (fig. 3(f)) indicate quiescent flow again with
relatively small pressure oscillations. For the entire speed range cov-
ered, the rotating-stall frequency measured in both compressors was found
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to be a function of outer-spool speed, indicating that the stall condi-
tion originates in the outer spool.

Compressor efficiency. - Further evidence indicating that the
rotating-stall condition originates in the ocuter spool is provided by the
compressor efficiencies presented in figure 4. Outer-spoocl efficiencies
detericrate rapidly through the rotating-stall speed range, whereas the
inner-spool performance remalns essentially unaffected. Thus, the peri-
odic stall points b to e (figs. 2 and 3) result from flow conditions in
the outer spool. In figure 4 it is evident that some overlap occurs with
the bleeds closed at a rotor speed of about 58.0 percent; this stems from
a hysteresis effect. The type of compressor operation depends on the di-
rection of speed change; that is, for speed decreased from 67.0 percent,
the rotating-stall condition would persist to a speed of perhaps 57.0
percent; however, for speed increased from 50 percent, rotating stall
would not be encountered to about 60 percent speed.

The variation of amplitude of pressure oscillations with radial posi-
tion in rotating stall is shown in figure 5. Pressure oscillations in
the rotating-stall speed range were less severe near the hub of the first
stator stage. The opposite occurs for the pressure oscillations at the
entrance to the inner spool. The hub oscillations are much stronger than
those obtained at the tip. Apparently the rotating-stall region origi-
nates at the tip of the outer-spool inlet stages, but this low-energy air
moves through the compressor into the hub at the inner-spool inlet. This
movement of the low-energy air probably explains the weakness of the pres-
sure oscillations in some of the traces in figure 3; that is, the probes,
which were in a fixed position at one-third the passage height from the
tip, did not detect the strongest stall signals at every stage. However,
because the trends in figure 5 are unaffected by speed, the data in fig-
ure 3 should be qualitatively representative of speed-change effects in
the rotating-stall region.

Inner spool. - The inner-spool map with the air-bleed ports closed
is presented in figure 6. Operating lines with two exhaust-nozzle areas
and the compressor stall-limit line are shown on the map. Increasing the
exhaust-nozzle area lowers the operating line on the inner spool and
raises it on the outer spool (see figs. 2 and 6). (See ref. 17 for a
discussion of exhaust-nozzle-area effects on a two-spool turbojet engine.)
No rotating-stall zones were observed: to originate in this compressor
during closed-bleed steady-state operation at low engine speeds.

Although the effects of the rotating-stall zones that occurred in the
outer spool persisted through the inner spool, no additional rotating-
stall zones were found to originate in the inner spool during closed-
bleed operation at the low engine speeds. At high rotor speeds, the pres-
sure ratio margin between steady-state and stall operation decreased
gradually and thus indicated that, if the rotor-corrected speed were in-
creased sufficiently, a surge condition ultimately would be encountered.

|
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Bleed effect on inner spool. - In the rotor speed range where inter-

compressor air bleed is effective in relieving outer-spool stall, the ef-
fects of this air bleed on the performance of the inner spool are of
interest. Intercompressor air bleed reduces the pressure ratio across
the outer spool, which in itself would not affect the inner-spool per-
formance. However, air bleed did increase the flow velocity at the tip
section of the inner-spool inlet stage by about 10 percent. The radial
velocity distortion evidently caused the entire inner-spool map to shift
toward lower -airflows, as shown in figure 7. Although air bleed normally
would not be employed at high rotor speeds, it is of academic interest

to note that open-bleed operation at high corrected speeds (about 105
percent) resulted in the formation of an intermittent rotating stall (fig.
7). A high-speed oscillograph trace of the rotating-stall formations is
shown in figure 8. At corrected inner-spool speeds as high as 103 percent
of rated speed, no rotating-stall patterns are evident (fig. 8(a)); at a
corrected speed of 105 percent, an intermittent rotating stall is evident
in the thirteenth-stage stator (fig. 8(b)). At a corrected speed of
106.5 percent, the rotating-stall pattern suddenly increases in amplitude,
and complete compressor surge occurs (fig. 8(c)). Although this phenome-
non has not been generally observed in other compressors at high speeds,
it might well be expected; that is, above design speed the excessive pres-
sure ratios in the compressor result in low axial velocities in the rear
stages. The low axial velocities in turn mean excessive angle of attack
and, hence, rotating-stall formation. Although these stall data are for
the compressor bleeds open, at higher altitudes similar stalls were en-
countered with the bleeds closed. Tests on a three-stage axial-flow com-
pressor, reported in reference 14, also indicate that rotating stalls are
formed initially in the outlet stage.

Stage-loading curves. - Stage-loading curves are plotted in figures
9 to 15. In figure 9(a) local pressure coefficients for the tip, mid,
and hub stations are shown as functions of average flow coefficient for
stage 1 of the outer spool. As is typical for axial-flow compressors,
first-stage stall is prevalent at less than design speeds (indicated by
the positive slope of the loading curves in the low-speed region). These
data indicate that the stall is not localized but rather exists at both
the hub and tip stations simultaneously. The rotating stall apparently
originated at the tip section, as indicated by the abrupt discontinuity
in the characteristic curve of the section. This is further substantiated
by the fact that the pressure oscillations shown in figure 5 were most
intense at the tip section for the first rotor stage. Therefore the surge
condition of the outer spoocl at rotor speeds between 75 and 84 percent of
rated outer-spool speed (fig. 2) is attributable to first-stage tip sec-
tion characteristic. The pressure coefficient (fig. 9(b)) is plotted as
a function of local flow coefficient for stage 1 only, because of insuf-
ficient static pressures throughout the compressors to define local flows
for all stages. However, at the entrance to the outer spool there was
enough instrumentation to compute local flow coefficients at the tip and
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hub stations. The local flow data are presented in figure 9(b) as a
means of checking the trends indicated by the average flow coefficients
in figure 9(a). The curves based on the local flows are similar to the
average-flow-coefficient curves except that the flow range at the hub has
been broadened considerably and indicates a gentle transition into the
stalled region. At the blade tip the entry into stall is more sudden at
a corrected speed of about 78 percent (where the bleed-closed operating
line intersects the compressor stall line, fig. 2).

An sdditional picture of the inlet stage performance might be ob-
tained from the first-stage efficiencies, which are shown as a function
of rotor speed in figure 9(c). The sharp effect of rotating stall on
blade tip efficiency is illustrated by the sudden drop in performance at
about 75 percent with the air bleeds closed. Efficiency at the mid and
hub stations are not affected strongly by the rotating stall. At the hub
the performance deteriorates gradually so that at 50 percent of rated
speed the local efficiency is about 40 percent of rated speed efficiency.
This is a reflection of the pressure-coefficient data shown in figure
9(b), indicating that the hub is stalled over the greater portion of the
speed range.

Loading curves for coumpressor stages 2 to 3 indicate only small
changes for the entire operating range shown (fig. lO). These data are
not sufficiently accurate to attach significance to the slope of the mid-
span points in figure 10. Compressor stages 4 to 6 (fig. 11) have char-
acteristic shapes of a definite negative slope. This trend becomes more
pronounced in the exit group of stages 7 to 9 (fig. 12), where sizeable
changes in pressure coefficient occur as flow or engine speed is varied.
These loading curves for the outer spool of the engine are typical for a
high-pressure-ratio subsonic axial-flow machine (ref. 18).

Pressure-coefficient curves for the inlet stage of the inner spool
are presented in figure lS(a). The flow range is small; the outer-spool
map (fig. 6) indicates a speed variation of only 28 percent for this
compressor. This is contrasted to a speed change of 58 percent for the
outer spool (fig. 2). The low level of pressure coefficient indicates
light loading of this stage.

The middle group of stages of the inner spool (fig. 14, stages 11 -
13) indicates small changes in flow coefficient (angle of attack), and
the relatively high loading is characteristic of this stage group in an
axial-flow compressor. The exit-stage-group (fig. 15, stages 14 - 16)
loading is characterized by large changes in pressure coefficient for
relatively small changes in flow coefficient.

Transient Performance

Comparison of transient and steady-stall limits. - Stall data were
obtained on the inner spcol by the following techniques:

Tv6e
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(1) siow but steady decreases were made in exhaust-nozzle area until
the inner spool was sufficiently loaded to cause surging. For this type
of transient data, the direct-inking oscillograph and slow-response pres-
sure probes were used.

(2) Rapid increases were made in engine fuel flow to the surge point.
The high-response pressure probes and high-speed recording methods were
used to accurately follow pressure changes.

The surge pressure ratios obtained by the two transient-approach
techniques were substantiated by obtaining complete over-all and inter-
stage steady-state compressor data at pressure ratios just below the
surge point at several engine speeds. This method is commonly used in
compressor rig tests where pressure ratio is varied by manipulation of a
flow discharge throttle. With an engine, the compressor pressure ratio
can be varied similarly by variation of exhaust-nozzle area. The data
obtained by these techniques are presented in figure 16, where inner-
spool pressure ratio is shown as a function of corrected inner-spool
speed. (The inner spool is considered here because this compressor
stalled during these transients.) The quasi-static stall points agree
favorably (considering the nature of the data) with the fuel-step stall
points, which were measured with the fast-response oscillographs. The
reliability of both these sets of stall points is attested to by the
proximity of the steady-state points obtained under the stall-limit line,
vhich fall reasonably close to the transient data. Rate of approach to
the stall-limit line then does not seem to affect the stall pressure ratio.

Interstage pressures. - Data for the study of the sequence of events
leading to compressor stall during transient operation were obtained from
pPressure probes at several interstage locations. High-~-speed oscillograph
records of total-pressure variation at the exits of stages 1, 9, and 13
are shown in figure 17. These traces indicate a smooth increase in pres-
sure following the sudden increase in engine fuel flow, with no evidence
of rotating-stall formation prior to the peak or stall-inception point.
In contrast, the time histories shown in figure 18 illustrate the approach
to stall when a rotating stall, with its characteristic pressure oscilla-
tions (refs. 12 - 14), existed prior to the step increase in fuel flow.
In the case shown, a single-zone stall rotating at about one-half of
puter-spool speed existed prior to the beginning of the transient.

It will be recalled that the rotating stall was shown to originate
in the outer spool with the air bleeds closed. These pressure traces are
from two probes in stator stages 1 and 9 separated circumferentially by
about one-third the compressor annulus. It is evident that the rotating-
stall patterns are out of phase because of the difference in circumferen-
tial position (see arrows F, G, H, L, and K). However, the peak pressures
in stage 1 occur at the same time for the two pressures (see point A);
also, the minimum pressures (point B) in stage 9 occur at the same time
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for the two pressure histories. Between stall point A in stage 1, which
is the maximum pressure prior to the collapse, and rotating-stall point H,
there is a further deterioration in flow from a single rotating stall to
at least a two-zone stall pattern. The significant point demonstrated
here is that when the critical stall point (sometimes referred to as stall
limit, surge point, full stall, etc.) is reached, the pressure all around
the annulus is at its particular maximum.

Adjusting the pressure histories in figure lB(a) for the time dif-
ference arising from the rate of travel of the rotating stall and the
circumferential location of the probes yields the traces shown in figure
lB(b). As would be expected, the rotating-stall patterns are now in
phase, but the maximum and minimum points C and D, respectively, are now
out of phase. These data would seem to indicate that, for the critical
stall point, it is incorrect to adjust the pressure trace for circumferen-
tial probe location and that the critical stall pressure is uniform
around the annulus even though it was preceded by a rotating-stall
condition.

Stage pressures during stall inception. - Typical pressure traces
from probes placed in several interstage stations are shown in figure 19.
These traces were obtained by step-increasing the fuel flow sufficiently
to cause compressor stall with the intercompressor bleeds open (fig. 19
(a)) and closed (fig. 19(b)). The pressure probe in stage 16 indicates
the largest increase in pressure prior to the stall. Stall in these fig-
ures has been labeled "Region of stall inception” because of the greatly
expanded time scale; that is, it would be difficult to select a single
point on the time scale as being the compressor stall point. It is in-
teresting to observe the steady and rapid increase in pressure in stage
16 up to a maximum where it "tops-out" (see point A). As this pressure
starts to drop, there is a rapid buildup in pressure measured in stator
stage 13. A similar action can then be observed in the upstream stages.
This action may be explained as follows: At high rotor speeds a suffi-
ciently large fuel input will load the rear stages until one stage stalls.
At this instant there is a rapid drop in airflow through the stalled stage
and, therefore, the airflow through the remaining stages must decrease to
readjust to the new operating condition. As the flow is reduced at es-
sentially constant speed, the angle of attack increases until other stages
stall. The time required for a given stage to stall will depend on the
flow margin between the operating point and the stall point.

Stage pressure ratios. - From the stage pressure histories obtained
during accelerations to compressor stall it is difficult to analyze the
significant changes in stage loading. It would be desirable to trace the
pressure ratio across the individual stage group during the time the
stalling progresses through the machine. Histories of the stage pressure
ratios were constructed for all stage groups during the entire accelera-
tion to stall by calibrating the pressure traces and using automatic
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computing equipment. In figure 20 are plotted both stage and over-all
compressor pressure ratios as functions of time for bleeds open and
closed. Prior to the critical stall point A in figure 20, the maximum
loading change takes place in exit stages 14 to 16 of the inner spool.

It is the outlet stage group (stages 14 to 16) that stmlls first, fol-
lowed in succession by the upstream stages to the inlet of the outer
spool. Progression of the stalling process through both compressors re-
quires between 0.02 and 0.03 second. The histories of over-all compressor
pressure ratio are similar for both open and closed bleed positions (fig.
20). It is interesting to note that the loading of the outer spool re-
mains essentially unchanged during the entire acceleration, while the
inner-spool pressure ratio increases to stall (point G, fig. 20). At
this point, the inmer spool unloads rapidly, while the outer-spool pres-
sure ratio builds up to the point at which it also stalls (point H, fig.
20). Although stall points A to F in figure 20 occur in an orderly
fashion, this sequence need not always be the same. As was discussed

in the section "Stage pressures during stall inception,” the time re-
quired for a given stage to stall will depend on where the stage is oper-
ating before the stalling cycle begins. For example, if, when a rear
stage stalled (causing a flow readjustment through the machine) stage 9
were operating much closer to its critical flow than stage 13, stage 9
would stall prior to stage 13. Therefore, some stall sequences were ob-
served that were not in the geometric order shown in figure 20.

Stage stall lines. - Stage stall points or pressure-ratio peaks were
obtained for several speeds at 35,000 feet and a flight Mach number of
0.8 from a series of plots such as those in figure 20. These points were
then plotted as a function of respective spool speed to form the stage
stall lines in figure 21. These stage stall points do not occur simul-
taneously, but rather in a time sequence as was demonstrated in figure
20. The stall points for a given stage group and compressor-bleed posi-
tion correlate to a single line in an orderly fashion. The fact that the
stage pressure ratio, during an acceleration to the compressor stall limit,
rises to a unique value at a given speed and then drops off, confirms that
this peak pressure ratio is the stall value for that particular stage
group. The locus of these peak pressure ratios obtained during the stall
cycle then represents the stall line for that particular stage group.

In addition to the individual stage groups, the stall pressure-ratio
points for the inner and outer spool are shown in figure 21. These data
also determine well-defined curves. Use of the intercompressor alr bleeds
bas some effect on several of the stall lines. The exact reason for this
effect is not known although, as previously noted, air bleed did alter the
intercompressor velocity profiles considerably.

The same reduction techniques used to obtain the data in figure 21

were used on stalls run at an altitude of 50,000 feet and a flight Mach
number of 0.8. The results obtained at 50,000 feet are similar to those
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at the lower altitude. This similarity can be seen by the direct com-
parison of the stall data fo{ over-all pressure ratio for both compres-
sors shown in figure 22. e

Transient and steady-state stall. -~ From a stage-loading plot of the
pressure coefficient against the flow coefficient, it is possible to cal-
culate the stage stall pressure ratio (see appendix). This calculation
is feasible because the stage-loading curve is a unique function of pres-
sure and flow coefficients and is unaffected by rotor speed. Therefore,
from the peak pressure coefficient on a stage-loading plot the stage
stall pressure-ratioc curve can be calculated over the desired speed range.
A calculated stall line for the outlet-stage group is compared with the
transient stall data for this stage group (from fig. 21) in figure 23.
This computed steady-state stall line affords an excellent check on the
transient stage stall data. This close agreement then leads to the con-
clusion that transient stage-stall characteristics can be closely pre-
dicted from the steady-state pressure coefficient curve, thus affording
a method very helpful in predicting how much a compressor can be loaded
before the stall-limit pressure ratio is obtained.

Acceleration

Typical accelerations are shown in terms of stage-pressure ratio and
corrected speed in figure 24. For the successful throtile bursts (ac-
celerations A and C), the outer spool accelerates in speed along a path
very close to its steady-state operating lines. The inner-spool stage
groups load in the direction of the respective stage stall line, with the
most pronounced loading change in the outlet-stage group. An accelera-
tion to the stall 1line (acceleration B) produces more far-reaching effects
within the compressors. The pressure ratio of the inner-spool outlet
group increases to its stall line (reproduced from fig. 21) and then
starts to unload. The preceding stages in the inner spool act similarly
in sequence. (The point at which the individual stage groups are operat-
ing when the last group of the inner spool 1s at the stall point is marked
with a triangular symbol.) The stage stalling then moves into the outer
spool and each of these groups load and stall in an orderly sequence
through the entire compressor. This action in the outer spool is in sharp
contrast to the accelerations that did not encounter stall where the
stages hardly deviated from their steady-state operating lines.

CONCLUDING REMARKS
A study was made of the surge inception characteristics of the com-

pressor units of a two-spool turbojet engine. The compressors were rep-
resentative of current design practices and performed well within the

Tv6e
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intended operating regions. Incipient stall and surge conditions were
induced by fuel flow and exhaust-nozzle-area variations as well as by
off-design operation of compressor bleeds.

Operation at low rotor speeds with compressor bleeds closed resulted
in a rotating-stall condition that originated in the blade tip region of
the inlet stage of the outer spool. The effect of the rotating stall
persisted through both compressors, but the low-energy air in the stall
zone propagated from the tip area of the outer-spool inlet stage to the
hub area of the inner-spool inlet stage. The tip stall in the outer com-
pPressor ultimately degenerated into a complete surge condition in the
midspeed region. The flow conditions over the entire blade span were
typically off-design for operation with the bleeds closed at low rotor
speeds. The stall condition was alleviated by use of intercompressor
air bleed. Rleeding of air from between the two compressors upset the
velocity distribution into the inner spool, which resulted in a shift of
the performance map in the direction of lower airflow. In addition, air
bleed gave rise to a rotating-stall condition in the inner spool at high
rotor speeds that sometimes resulted in complete surge.

Fast-response instrumentation and high-speed recording techniques
were used to show that the rate of approach had no effect on the stall-
limit line. Interstage pressure measurements during acceleration to the
compressor stall limit indicated that rotating stall was not a necessary
condition to compressor surge. At the critical stall point (peak pres-
sure) the circumferential interstage pressure distribution was uniform;
if rotating stall existed prior to the start of the acceleration, the
pressure around a given stage was varying. However, when the critical
stall point was reached, the pressure around the annulus was uniform.

From interstage pressure traces made during surge inception, histe-
ries of stage pressure ratios were computed. The outlet group of stages
generally was first to stall during an acceleration at high engine speed.
With sufficiently rapid pressure traces, it could be seen that following
the pressure rise and sharp drop in the rear stage (which signaled stall
inception) similar action took place in the upstream stages; that is, in
one stage after another there was a sharp increase in pressure and then a
sudden collapse. If the excessive fuel rates that caused the acceleration
were sufficiently high, the stall would be repeated at a rate of approxi-
mately 10 cycles per second (surge). From these stage stall points for a
large series of compressor surges, reproducible stage stall lines were
constructed as functions of rotor speed.

As a check on the transient stage stall, a stall line was synthe-
sized from a stage-loading curve that was constructed from steady-state
data. The transient and steady-state stall lines for the stage group
investigated agreed quite closely.
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While the results of this investigation add to the clarification of
some aspects of the compressor-surge phenomenon, further study is required
to provide a concise understanding of the surge inception and propagation
process as well as to ascertain the generality of the phenomenon for
axial-flow machines. An example of such a problem area would be the defi-
nition of the validity of cascade test data in determining multistage com-
pressor stage characteristics, particularly during transient operation.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 21, 1956
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APPENDIX - SYMBOLS AND CALCULATIONS
area, sq ft
specific heat at constant pressure
diameter, ft
frequency, cps
acceleration due to gravity, 32.17 ft/se02
mechanical equivalent of heat, 778.2 ft-1b/Btu
rotor speed, rpm
corrected speed, rpm
total pressure, 1b/sg ft
gas constant, 53.35 ft-1b/(1b)(OF)
stagnation temperature, °R
wheel speed, ft/sec
velocity, ft/sec
weight flow, 1b/sec
corrected airflow, 1b/sec
ratio of specific heats

ratio of total pressure to NACA standard sea-level pressure of
2116 1b/sq ft

adiabatic efficiency

ratio of total temperature to NACA standard sea-level temper-
ature of 518.79 R

number of stall zones

flow coefficient, (VX/U) =
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¥ pressure coefficient,
r-1 -1
gJcpTgt P_o Y . 3600 gdcpTr Po\ 7~ L
—z[\? "Nt a2 P §

(Vm/A/e) I n ﬂdm I
Subscripts: o

. >
a air H
I stage inlet
i inner
m mean
n number of stages in group
0 stage outlet
0o outer “
r rated
st standard
X axial
1-9 stages in outer spool

10-16 stages in inner spool

Calculation of Stage Stall Line

The first step in computing the stage-stall line presented in
figure 24 was the determination of the peak pressure-coefficient value
for this group of stages. 1In figure 16 is presented the loading curve
for this stage, obtained from steady-state points. However, there is
not sufficient data here to be assured of the maximum pressure coeffi-
cient. To obtain the peak value, the exhaust-nozzle area was decreased
until surge was obtained. Then steady-state points were taken at sev-
eral speeds just prior to the point of stall. These points, at the
stall loading of this outlet group of stages, clustered around a pres-
sure coefficient value of 0.32. Using this value and the above defi- -
nition of pressure coefficient, the stall pressure ratio was calcu-
lated for a range of compressor speeds.
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TABLE I. - INSTRUMENTATION
Station Steady state Transient
3 Number of |{Number of| Number of |Number of total-
,g total- static- |thermocouple| pressure probes
i W pressure |pressure probes
. é probes | probes Fixed|Variable
0 42 16 16 1 -
1 15 2 15 1 4
- 3 12 - 12 1 -
6 12 -- 12 1 -
9 24 - 12 1 4
10 9 -- 9 1 -
13 9 -- 9 1 4
16 20 -- 12 1l -
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Flgure 2. - Over-all performance of outer spool. Altitude, 35,000 feet; flight Mach
number, 0.8.
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Amplitude of pressure coscillations, AP/P, percent
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(a) Corrected outer-spool speed, 61.3 percent.
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(b) Corrected outer-spool speed, 56.0 percent.

Figure 5. - Variation of rotating-stall pressure amplitude with

radial position. Altitude, 35,000 feet; flight Mach number, 0.8;

compressor bleeds closed.
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Figure 6. - Over-all performance of inner spool. Altitude, 35,000
feet; flight Mach number, 0.8; compressor bleeds closed.
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't} Intermittent rotating stall can be

seen in stage 13. JCorrected inner-
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(c) Intermittent rotating stall into surge, visible earliest in

Ny N,

stage 13. Corrected inner-spool speed ——'—/(——A—) , about
Vey '\/ggr

106.5 percent.

Figure 8. - High-speed stall inceptlon in inner spool with com-
pressor bleeds open.
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